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Abstract. Recently it was proved that the Majumdar-Ghosh chain with the Hamiltonian 

has at least two ground states, in which the spins are arranged in nearest-neighbour singlet 
pairs. In this work it is shown that these two states are the only ground states. Besides, 
a rapidly converging variational method is given to determine the elementary excitations. 

1. Introduction 

This work is about the ground states and elementary excitations of the linear spin 
system introduced by Majumdar and Ghosh (1969a, b) (MG). The MG chain is, in our 
restricted definition, a linear system of spins f with an isotropic interaction (exchange) 
between nearest and next-nearest neighbours, and the interaction constant for next- 
nearest neighbours is f of that for nearest neighbours. 

It was suggested already in Majumdar and Ghosh (1969b) that the system has at 
least two ground states, the singlet-pair states (SPS), in which the spins are arranged 
in nearest-neighbour singlet pairs. The two SPS are asymptotically ( N  + 00) orthogonal 
and are connected by a translation over one elementary distance. 

Van den Broek (1980) gave the proof that the two SPS are indeed ground states for 
arbitrary N. So far it has remained an open question whether or not these two states 
are the only ground states. 

An analogous proof for the existence of a ferromagnetic ground state for a chain 
with competing interactions between neighbours and next-nearest neighbours has been 
given by Bader and Schilling (1979). 

In 8 2 it is proved that the two SPS are the only ground states for the system with 
periodic boundary conditions, the closed MG chain. For the open chain there is only 
one ground state. 

The MG chain confronts us also with the following interesting question. Is there a 
lower bound in the energy spectrum of the elementary excitations (Majumdar 1970, 
Shastry and Sutherland 1981, Caspers and Magnus 1982, 1983a)? Here we follow the 
suggestion of Shastry and Sutherland ( 198 1 ), who introduced excitations consisting 
of the two SPS ‘phases’, separated by a single ‘defect’. Even-numbered chains necessarily 
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contain an even number of these defects and in Shastry and Sutherland (1981), by 
means of a variational calculation, an upper bound for the lowest possible energy for 
two of these excitations was determined, in bound and unbound states. 

Section 3 of this paper is devoted to the analysis, in somewhat more detail, of 
excitations consisting of one single ‘defect’ in an odd-numbered chain. Starting with 
Shastry and Sutherland’s suggestion of one single spin, separating two SPS phases, we 
construct a variational wavefunction that contains also other components. Our calcula- 
tions result in a minimum energy per free defect that is somewhat lower than the value 
of Shastry and Sutherland (1981). 

Combination of two of these defects may result in scattering states, the energy of 
which is simply the sum of the energies of the two defects, or in bound states. Two 
exact excited states already known (Majumdar 1970, Caspers and Magnus 1982) may 
be considered as bound states of these defects. 

Two unbound defects with minimum energy result in the lowest excitation energy 
that was found till now. The corresponding ‘gap’ in the energy spectrum is consistent 
with numerical results for small systems (Majumdar et al 1972). 

In § 4 the possibility of a twofold ground state, also of the SPS type, is discussed 
for the generalisations of the MG chain (Caspers 1982, Caspers and Magnus 1983b). 
In this context we may also draw attention to the work of Klein (1982), who also 
discussed two-dimensional generalisations of the SPS. 

2. Twofold ground state 

According to van den Broek (1980), Caspers (1982) and Caspers and Magnus (1983b) 
the Hamiltonian of the MG chain with periodic boundary conditions may be written 

with 

H; = (s, +s,+, +q+2)2-q.  (2) 

The two SPS are eigenstates of H with lowest possible eigenvalue because they are 
eigenstates of all individual H; with corresponding lowest eigenvalue f - 2 = - 9.  

The most important property of the SPS is that the total spin of all triples ( j , j  + 1 , j  + 
2)  is 4. This property necessarily holds for all possible ground states of H, because 
all H; should have their lowest eigenvalue -5. It is our aim to prove that this is only 
fulfilled for the two SPS. 

The first step in the argument is to write all possible configurations of three 
consecutive spins in terms of Ising states, i.e. eigenstates of the individual Si=, i =  
1,2, . . . ,2N.  In general there exist eight three-spin states: 

I+J= I++-), I(c14)= I--+), 
I&) = I+-+), I+J = I-+-), 147) = I+++), (3 1 
lCLA=l-++), 146) = I+--), I&) = I---). 
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The three positions in the kets correspond e.g. with the spins j ,  j + 1, j + 2  respectively, 
a +( -) sign denoting an eigenstate of an Si=( i = j ,  j + 1, j +2) with eigenvalue +4( -4). 
As was shown before in the ground state of the chain only three-spin states correspond- 
ing with total spin 4 should appear. So we should exclude 14,) and ]&) in a possible 
construction of a ground state of the chain. The only configurations that are allowed 
are the following: 

6 

I $ ) =  C anI$n) ,  a,+a,+a,=O, a4 + a5 + a6 = 0, (4) 
n = l  

corresponding with the four-dimensional eigenspace of the restriction of fij, for the 
eigenvalue -;. So we may conclude that in the Ising states that appear in the ground 
state of the chain there are no more than two + or - spins in a row, and the allowed 
configurations of three consecutive spins obey (4). 

In the next step we may draw the conclusion that all relevant Ising states for the 
chain are fully characterised by the position of the + + and - - neighbour pairs, with 
the exception of the two NCel states: 

I + - + - + - + - ,  . . +-), I -+ -+ -+ -+ .  , . -+). ( 5 )  

Now we will prove that configurations in which a + + pair is followed by another + + 
pair, wherever located, have amplitude zero, and in order to do so we consider the 
following Ising states: 

1 . .. ++-+-+-+... +-+-++...), 

I . , .  +-e-+-+-+.. .  +-++-+...), 

1 . .  . ++-+-+-+... ++-+-+...), 

1 . . .  ++-++-+-... -+-+-+...), 

in which in all kets the configurations indicated by the dots are the same, with the 
restrictions already formulated. The configuration between the two ++ pairs is the 
NCel state in all kets. The last ket makes an exception to these rules: the NCel state 
indicated by the middle group of dots is the time inversion of the corresponding state 
in the other kets. 

Now it is easily proved with the aid of (4) that, if the amplitude of the first ket is 
x, the amplitude of the second is -x, of the third x, etc. The last one necessarily has 
an amplitude +x, but considering the configuration ++-++ at the front end, one 
easily proves that x=O, on the basis of (4) applied on the second, third and fourth 
spin of this group of five. In the same way one may state that a -- pair can never 
be followed by a -- pair. 

In an analogous way we may consider a set of states in which a ++ (--) pair is 
followed by a -- (++) pair, and instead of ( 6 )  we now have 

I . .  . -++-+-+-+. . . +-+-+--. . .), 
I . .  , -++-+-+-+. . . +-+--+-. . .), 
I . .  . -++-+-+-+. . . +--+-+-. . .), ( 7 )  

1 . .  . -++--+-+-. . . -+-+-+-. . .). 
Again, in between the two equal pairs we have a NCel configuration. In an analogous 
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@+(nl ,  n2, n 3 , .  . . , nzp), ++a t  positions (2nzk-1-1, 2n2k-l)' 

-- at positions (2n2k-1, 2n2k) 

@-(n l ,  n2,  n 3 , .  . . , nZp), + + a t  positions (2n2k-1, 2n2k) 

- - a t p o s i t i o n ~ ( 2 n ~ k - ~ - 1 , 2 n ~ ~ - ~ )  

*+(n,, n2, n 3 , .  . . , n 2 p ) ,  ++atpositions (2n2k-l,2n2k-I+1) 

-- at positions (2nzk, 2r1,~+l)  

k = 1,2,3, .  . . , P, 

1 s n , < n 2 < . .  . < ~ I , ~ S N ,  

P =  1,2, .  . . , [N/2], 

(2N, 2N+1) = (1 ,2N),  

> 

x+=l+-+-+-. . , +-), x - = l - + - + - + .  . . -+). 

The two states ,y* are the two possible NBel states for the complete chain. 
The analysis that resulted in the selection of the six types of states shown in (9) 

also gives us a simple relation for the amplitude of all @+ for given P ;  the same is 
true for the @-, 9+ and W. These amplitudes are respectively given by table 1. 

Table 1. Amplitudes of k ing  states. 

In comparing the amplitudes of the states given in (7) and (8) with the restriction 
that the states in (7 )  contain more than one pair of both types + + and - -, one 
immediately derives that the x p (  +) etc are independent of P: x p (  +) = x( +), x p (  - )  = 
x( -), y p (  +) = y (  +), y p (  - )  = y (  - ) .  On the basis of the periodic boundary conditions 
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imposed on the system one derives that the sum of the amplitudes of the following 
states is zero: 

@ + ( n l  = 1, n2, n 3 , .  . . , t 1 2 P - 1 ,  n 2 P  = W ,  @ - ( n 2 ,  n 3 , .  * * , n2p-11, P 2 2 ,  

from which it immediately follows that x( +) = ( - ) N x (  - )  = x. In an analogous way 
it holds that y (  +) = ( -)"y( - )  = y. 

Finally the two parameters x and y determine the amplitude of the two NCel states 
x+ and x-. The sum of the amplitudes of the state x+ and the states that start with 
the configurations + + - - + and + - - + + respectively and are otherwise identical 
with x+ equals zero. Consequently the amplitude of x+ equals x + ( - ) "y, and in the 
same way one finds the amplitude of x- to be (-)"x +y. 

The two possible SPS may be written 

As was proved in this section, all ground states of the Hamiltonian ( 1 )  may be 
expressed in terms of two independent parameters x and y ,  and consequently all linear 
combinations of I@,) and 19,): 5/@o)+~/v lo)  may also be determined by the set (x, y ) .  

Considering the Ising states starting with the configurations ++--+ and +--++ 
and having a NCel ordering for the rest of the chain, and realising that the first one is 
a component of lq0) and the second of I@,), one finds 

5 = ( - INY,  T = ( - ) N X .  (11 )  

In this way we have completed the proof that the two SPS are the only ground states 
and have given a relation between these two states and the set constructed in this 
section. This is for a system with periodic boundary conditions. 

For open ends, also for an even number of spins, the Hamiltonian H may be written 

For this Hamiltonian one easily proves that again I@,) is a ground state, which is not 
the case for 19,). In an analysis completely analogous to the one given before, one 
proves that all ground states of H' are also ground states of @ ( j  = 1 , .  . . , 2 N - 2 ) ,  
2Sl - S2 and 2S2N-i .SZN.  This leads to a set of Ising states given in (9) with the 
exclusion of @+ and @-, consequently x = 0, which completes the proof. 

3. Elementary excitations 

Shastry and Sutherland (198 1) considered elementary excitations that consisted of a 
single unpaired spin, separating two different SPS pKases, shifted with respect to another 
over one elementary distance. In the even-numbered chains the number of these 
excitations or defects should always be even. 

These states with a fixed even number of defects, however, are not eigenstates of 
Hamiltonian ( l ) ,  and the same is true for linear combinations which represent defects 
with wavenumbers k. But these latter states are variational for the correct excited 
states and Shastry and Sutherland (1981) determined along these lines scattering and 
bound states of two defects. 
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In this paper we consider, in the first instance, only free defects and suppose that 
they can always be described by two asymptotic regions corresponding with the two 
SPS phases, connected by a ‘stacking’ fault of finite size. In this picture it is immediately 
clear that for scattering states their energy is also additive. The description of the 
‘stacking’ fault can be made more sophisticated than in the Shastry and Sutherland 
model by adding to the variational wavefunction other terms, which are generated by 
the Hamiltonian acting on the simple defect state. These extra terms correspond with 
five or nine consecutive spins separating two SPS phases. 

From numerical results it follows quite clearly that the procedure is rapidly converg- 
ing, at least if one restricts oneself to three terms only: the last term is very small 
whereas the Shastry and Sutherland term is predominant. 

A system in which there exists only one defect necessarily contains an odd number 
of spins, which we choose to be P =  2 N  + l .  Our Hamiltonian is again of the form 
( 1 )  with the number 2 N  replaced by P. The zero-order expression for a defect state 
now reads: 

I$), = IO)1,210)3,4 * IO) j -2 , j - l I  +)jIO)j+l , j+Z * * * I ~ ) z N , z N + I *  (13) 

The symbol IO), i + l  denotes a SPS for the pair (i, i + 1)  and the defect is located at site 
j and has spin up. The effect of the Hamiltonian H on I$),. is threefold: 

(i) it reproduces I$),., 
(ii) it generates states and 
(iii) it generates a state la)j. 

The defect may jump over two elementary distances in both directions, resulting in 
l $ ) j * 2 .  But also a state with a more complicated defect may result, the state la),., which 
corresponds with an SPS for the pairs ( 1 , 2 ) ,  (3,4), . . . , ( j -4 ,  j -3) ,  . . . , ( j + 3 ,  j + 
4), . . . , ( 2 N ,  2 N  + 1) and a state with S = 4, M = 4 for the spins ( j  - 2 , j  - 1, j ,  j + 1, j + 2 )  
orthogonal to I$),. and l$)j+2.  (S, M )  represent total spin and z component for 
the defect. 

1 l a ) ) ~ = ( 1 / 2 J 5 ) [ 2 1 +  + + -  - ) + 2 \ -  - +++.>-I+- + -  +>-I- + + + ->  
A straightforward calculation of the relevant part of la),. gives 

- [ + - + + - > - I -  + + -  + ) l ~ j - 2 , . . . , j + 2 ) ~  (14) 

a normalised ket for the spins at position ( j  - 2 , j  - l , j , j  + 1 , j  +2). The state la),. is 
found by multiplying this ket with a state in which all the other spins are ordered in 
singlet neighbour pairs. 

It should be stressed that the states l + ) j l ~ ) j * 2  are non-orthogonal. This procedure 
of generating defect states may be repeated, resulting in a component of H21+jj (or 
f i la ) , . )  orthogonal to I+),., la),., la)ji2, which will be called, in its normalised 
form, le)j. This defect state contains a relevant part lie)),. (cf [la)),. given in (14)) that 
can be found in the appendix. 

So we finally propose a variational defect state, which is a linear combination of 
the states I$.>,., la),. and le), for different j ,  and which belongs to a given representation 
of the translation group of the chain. The selection rules for H, however, imply that 
states with even (odd) index j are only connected with states with even (odd) index 
j !  Consequently only even (odd) indices j have to be included in the Fourier sum for 
given k. For periodic boundary conditions, however, the spin defect at the odd position 
2 N  + 1, which in its most simple form is described by 

(15) I$)ZN+l = Io)1,2IO)3,t * .  * 1 0 ) 2 N - I , 2 N /  +)ZN+I, 
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may perform a transition to 

I$ )Z= lO)ZN+I,Il +)Z~o)3,4~o)ZN-l,2N (16) 

so all 2N + 1 positions are available for the spin defect. Effectively we have periodic 
boundary conditions for the defect states, corresponding with a system of length 
2(2N + 1)  times the elementary distance. The variational defect state will take the form 

( j  even) 

and we intend to calculate the expectation value of H for this generally not normalised 
state: 

ET = (H) = (*TI HI*T)/(*TI*T). (18) 

The minimum of (H) as a function of k will give us the best trial function for our 
defect. To determine (18) we first calculate all the possible inner products of the 
normalised kets that appear in (17). The results are given in table 2: 

Table 2. Inner products of the kets I$),, la), and le), 

Secondly we give, in table 3 ,  the effect of the Hamiltonian H on the states I+),, la)j 
and le)j: 

Table 3. Effect of H on I$)* la), and le)? 

The states Ig)j are orthogonal to all I + ) j , ,  
case when we take c = 0 in the variational state (17), we find for the value of (18) 

and le)j, for arbitrary j and j ' .  For the 

= (-41'2 COS 2 ks, 
I= I 

in which the value for K is asxmptotically correct for large N. From (19) it is immediately 
clear that taking z = b/a  = r e'", extrema of ET(AET) as a function of t$ are reached 
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for 4 = 0 or T. We find the following values for these extrema: 

A ET = ( - :K * J 5 r  +7r2)/(K + 1 + r 2 ) ,  cos 4 = *l .  (20) 

First we have determined the minimum of AET as a function of r, for fixed K.  Doing 
so we find that the minimum is reached for 

+ [ ( 1 7 ~  + 14)2 + 12(K + 1 ) ] ” 2 - ( 1 7 ~  + 14) 
r = r .  = 7 4=Tr. (21) 

2 J 5  
min 

Substituting these results in (20) gives us a AET that is a function of K only, and this 
function reaches its minimum at the boundary value K = 2 ( k  = *;T): 

AE?’(rmin(K = 2 ) )  = -1.031 13. (22) 

The more accurate calculations in which the terms le)j are also included in the 
variational state (17) lead to a final result that is only slightly different from (22): 

AEY’=-1.031 96. (23) 
Details of the very lengthy calculations in which use was made of the method of 
Lagrange undetermined multipliers, which were performed with a series of Fortran 
programs, are omitted here. The values (22) and (23) suggest, however, that our method 
leads to rapidly converging results. Inclusion of more terms in the series (17) does 
not seem relevant. 

These values should be compared with results in the literature which refer to 
even-numbered chains. An even-numbered chain may be subdivided in two parts with 
numbers 2 N ,  + 1 and 2N2 + 1 ,  and we may take N ,  and N2 >> 1. In these two parts 
subject to the same boundary conditions as above, for each part separately a wavepacket 
can be constructed by taking wavefunctions with a range Ak,, Ak, of the respective 
wavevectors k l ,  k,. The Ak are chosen large enough to localise the wavepacket within 
the boundaries of each part of the chain, but not so large that the energy becomes 
undefined; asymptotically the energy of this system will differ negligibly from the 
treatment given above. For the excited states considered in this section the lowest 
energy therefore equals 

-3( N I  + N2) + ~ A E T =  -3( N I  + N2 + 1 )  + (2AE7- + 3 )  = Eo + (2h& + 3 )  (24) 

in which Eo = -3(NI + N2 + 1 )  is simply the ground state energy. So the elementary 
excitations have a lower bound for their energy, which equals 

& = ~ A E T + ~ ,  

which for the best approximation (23) has the value 

E ( * 47) = 0.936 08. (25) 
The result of Shastry and Sutherland (1981), which corresponds with a = 1 ,  b = 0 in 
formula (191, equals 1. In their expression for the energy E ,  

E = J ( $  -21~0s QI), (26) 

one should take Q = 0, 
Majumdar et af (1972) performed calculations for short chains of 6, 8, 10 and 12 

spins, and reported on their results in a graphical way, from which it could be inferred 
that their lowest excitation also corresponds with E = 1 .  

and J = 2. 
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There already exist in the literature exact values for the energy of excitations of a 
special type for even-numbered chains of an unlimited number of spins (Caspers and 
Magnus 1982, Majumdar et a1 1972). These excitations correspond with states in which 
one or two singlet pairs are decoupled and put in a triplet state. One single triplet 
pair represents an energy 4, and the corresponding excitation energies are 4 and 8. 
Two of these excitations, however, may form a bound state, in which an energy 4 is 
regained. We originally had the intention to describe all possible excitations in the 
MG chain with these triplet pairs, but came to the conclusion that one does not find 
the lowest excited states along these lines, at least not in an easy way. 

We now firmly believe that (25) represents the best approximation up till now for 
the first excited state of the MG chain, but a rigorous proof that the energy spectrum 
has a gap above the ground state has not been given so far. 

4. Ground states for generalisations of the Majumdar-Ghosh chain 

The way of constructing ground states of the Majumdar-Ghosh chain with the Hamil- 
tonian ( 1 )  suggests a generalisation of the argument for more general systems, discussed 
in Caspers (1982) and Caspers and Magnus (1983b). All these systems have the 
property that the SP states are stationary states, and for special conditions they are 
ground states. It remains an open question whether or not they are the only ground 
states under these special conditions. A crucial step in the argument in 0 2 of this 
paper is the conclusion that all groups of three consecutive spins are in a doublet 
state: this is a necessary and sufficient condition for the two SPS to be the only possible 
ground states. Again in Caspers (1982) and Caspers and Magnus (1983b) the total 
Hamiltonian is subdivided into terms corresponding with a small group of spins: 
whereas in the simple MG chain we only have groups of three consecutive spins, we 
now have a subdivision corresponding with 3,5, . . . , 21M + 1 spins, 21M being the range 
of the interaction (1, = 1 for the simple MG chain). The coupling between a spin pair 
at positions i and i + n is now given by 

1, =f[2n + I  -(-)"I,  
this coupling being anisotropic generally and having a more complicated dependence 
on n. For the case that { J,, J,, J, 3 0, Jx + J y  > 0, Jy + J ,  > 0; S ( " 3  0, I.= 2, .  . . , I,; 1 ( ' ) >  
0) one easily checks that all groups of three consecutive spins are in a doublet state 
and consequently the ground state is a SPS. We believe, however, that there exists a 
larger set of parameters for which this is true. So far we were not able to formulate 
these more general conditions on the parameter set. 

5. Discussion of the results 

Because of the fact that two ground states of the Majumdar-Ghosh chain are exactly 
known, this system is interesting as a model for antiferromagnetic ordering. Recently 
a lot of effort has been put into the determination of the elementary excitations. These 
excitations seem to have a character that differs in an essential way from the well known 
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spin waves in the nearest-neighbour Heisenberg chain (cf Des Cloizeaux and Pearson 
(1962) and Johnson and McCoy (1972)). 

In this paper we have proved that the two ground states already known in the 
literature are the only ones. We also tried to gain more insight into the nature of the 
elementary excitations and made it plausible that there exists a gap in the spectrum. 
This could be of interest in the study of realistic physical systems in which there exists 
a predominant interaction within chains, which is of the Majumdar-Ghosh type. 

Appendix 

The defect state 11 e))j, corresponding with the index set {j - 4, j - 3, . . . , j + 3 , j  +4} is 
given by 

( 1 / (4&))[ -21 +- + + +- - +-) +2( - + ++ + - - - +) +21+- - - + + + +-) 

-21- +- - +++-+)+ll+++- +-- +-)+ 1 I +- ++++---) 

- 1 1 + + - + + - - - +) - 1 I + + + - + - - - +) + 1 I + - + + + - + - -) 
- 1 I - + + + +- +- -) + 1 I + +- + +- - +-) - 1 I - + + + +- - -) 
+ 1 I - +- - +- + + +) + 1 1 - - - + + + +- +) - 1 I - - +- + + + +-) 

- 1 I - - - + + + + +-) + 1 I - +- - + +- + +) + 1 1 - + +- + + +- -) 
- 11 - + +- +- - + +)- 1 I - +- + +- - + +) + 1 I - +- +++ +- -) 
- 1 I - -- + + + +- - +) + 1 I - - + + + +- +-)- 1 1 - - + + +- +- +) 

+1 I-- +++- ++-)+1 I--- +- +++- +)- 11 +--- ++- ++) 

- 11 +---+-+++)-lI+-+-+++--)+1/+-+-+--++) 

- 11 ++- -+-++- )+I1  ++--+-+-+)- lI++--++-+-) 

+ 1 I + +- - ++- - +)+ 1 I +- - ++- - ++)- 1 I +- - ++++--)I. 
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